Statistical Inference – Hypothesis Testing

Step 1: State the Hypotheses – Must Give Both

- a) Null Hypothesis
 - H_0 : parameter = hypothesized value (The parameter describes the population, not the sample.)
 - Null hypothesis usually states that there is nothing different.
- b) Alternative Hypothesis (What We Want to Prove)
 - H_1 : values of the parameter we consider plausible when we reject the null hypothesis
 - Three possibilities: Want to prove that the parameter is bigger, is smaller, is different
 - **1-sided alternatives** H_1 : param > number OR H_1 : param < number
 - **2-sided alternative** H_1 : param \neq number

Step 2: The Model: Two possible models for the sampling distribution of the statistic

- Sample Proportions use the Normal Model
- Sample Means use the *t*-Model

Step 3: The Test and P-Value

- a) The Test Name
 - For sample proportions the test is called a 1-Proportion z-Test.
 - For sample means the test is called a 1-Sample *t*-Test.
- b) **Calculate the P-value**: Assume the Null Hypothesis is true and find the probability of getting the statistic or something more extreme (based on one-sided or two-sided alternatives)
 - For sample proportions, use 1-PropZTest You can also use NormalCDF. NormalCDF does not require you to calculate the test statistic z. Only calculate z if the problem tells you to do this.
 - For sample means, use T-Test You can also use *t*CDF, but you first need to compute the test statistic *t*:

$$t = \frac{\bar{x} - \mu}{s / \sqrt{n}}$$

P-Value for H_1 : param > number

P-Value for H_1 : param < number

P-Value for H_1 : param \neq number

Step 4: Conclusion

- a) If the P-value is small (less than the selected α Alpha Level) then "Reject the Null Hypothesis and Accept the Alternative Hypothesis" and "There is significant evidence for the Alternative Hypothesis,"
- b) If the P-value is large (greater than the selected α Alpha Level) then "Fail to Reject the Null Hypothesis" or state "There is insufficient evidence to reject the Null Hypothesis".

Errors (These don't always occur – they are possible.)

- <u>**Type I Error**</u> The null hypothesis is true but we mistakenly reject it. This can only occur if H_0 True
- **<u>Type II Error</u>** The null hypothesis is false but we fail to reject it. This can only occur if H_0 False

	H ₀ True	H ₀ False
Reject H ₀	Type I Error	OK (The test was correct)
Fail to Reject H ₀	OK (The test was correct)	Type II Error