<u>Statistics – TI 84 Calculator</u>

Population MEAN (averages)

CONFIDENCE INTERVALS

<u>Calculator function:</u> **STAT - Tests – Tinterval**

	se either "stats" – when you have on a" – when you have all the data in a ta	ly a summary (mean & std dev) of the data or able or list)	
"stats"		"data"	
\bar{x} : sample mean		list: list that has data ($ex L_1$)	
S_{x} : sample standard deviation		freq: 1	
n: sample size		C-level: confidence level	
C-level: confidence level			
<u>Output:</u>	\bar{x} {sample average} \bar{x} {sample average} S_x {sample std dev}n{sample size}	{this is the confidence interval}	
	<u>the interval:</u> are% confident the true p	population mean or average is between # and #."	
Margin of error: ME = (upper number – lower number) / 2			
HYPOTHESIS TESTING			
Hypotheses:Null $H_0: \mu = \#$ Alternative $H_A: \mu \neq \#$ OR $H_A: \mu > \#$			
Calculator function: STAT - Tests - T Test			
<u>Input:</u> choos	e either "stats" or "data"		
"stats"		"data"	
μ_0 : number from hypothesis		μ_0 : number from hypothesis	
\bar{x} : sample mean		list: list that has data ($ex L_1$)	
S_{χ} : sample standard deviation		freq: 1	
n: sample size μ : $\neq < >$ (alternative hypothesis) μ : $\neq < >$ (alternative hypothesis)		μ : \neq < > (alternative hypothesis)	
<u>Output:</u> µ	{alternative hypothesis}		
t {test statistic – the number of std devs the sample is from the null hypothesis}			
р	p {P-value – the probability of getting the sample IF the null hypothesis is true}		

- \bar{x} {sample mean}
- S_x {sample standard deviation}
- n {sample size}

Making a Conclusion:

• If P-value < α (the level of significance) then we "reject the null hypothesis" and accept the alternative hypothesis. "There is evidence to suggest that the alternative hypothesis is correct"

 If P-value > α (the level of significance), then we "fail to reject the null hypothesis" but cannot conclude the null is true; there is not enough evidence to decide if null hypothesis is true or not. "There is insufficient evidence to reject the null hypothesis and accept the alternative."

Confidence Interval without using calculator function T-interval:

(Keep as many decimals as possible. Do not round until the final calculation)

Calculate sample mean and standard deviation: \bar{x} and S_x Calculate standard error: $SD(\bar{y}) = \frac{S_x}{n}$ Calculate percent outside confidence interval: $a = \frac{(100 - CI\%)}{2}$ (convert to decimal form) Calculate the degrees of freedom: df = n - 1Calculate critical value: $t^* = invT(a, df)$ Calculate margin of error: $ME = t^* * SD(\bar{y})$

Confidence interval: $\bar{x} \pm ME$

Hypothesis Testing without using calculator function Ttest:

Calculate sample mean and standard deviation: \bar{x} and S_x Calculate standard error: $SD(\bar{y}) = \frac{S_x}{n}$ Calculate test statistic: $t = \frac{\bar{x} - \mu_0}{SD(\bar{y})}$ Calculate the degrees of freedom: df = n - 1

Calculate P-value: p = tcdf(lower, upper, df)

{lower and upper depend upon the alternative hypothesis. Sketch a t-curve centered at null hypothesis, plot the sample mean, and determine if the alternative range is above or below. Remember for a "not equal" alternative to multiply the P-value by 2}