SETS VOCABULARY

$\underline{\boldsymbol{S e t}}$ - collection of objects. Use Capital letters to represent the set name.
Element - a member of a set. Use lowercase letters to represent the elements of the set.
The cardinal number of set A is the number of elements in set A. It is denoted $n(A)$ and read "The number of elements in the set A ". A set is finite if its cardinal number is a whole number. An infinite set is one that is not finite.

Example: $A=\{2,4,6,8\}$
2 is an element of A or $2 \in A$
3 is not an element of A or $3 \notin A$
The cardinality of set A is 4 or $\mathrm{n}(A)=4$.
Set A is a finite set

Representing a Set with the Listing Method

Write the set by listing its elements inside braces.

Example: $A=\{2,4,6,8, \ldots\}$

Representing a Set with the Set-builder Notation

Is there a characteristic that all the elements in the set share that can be used to describe the set in words or by a formula?
Example: $A=\{2,4,6,8, \ldots\}=\{\mathrm{x} \mid \mathrm{x}$ is an even integer $\}$ We read this as "The set A is equal to x such that x is and even integer."

Familiar Sets of Numbers

The set of Natural (counting) Numbers $\quad N=\{1,2,3, \ldots\}$
The set of Whole Numbers $W=\{0,1,2,3, \ldots\}$
The set of Integers $I=\{\ldots,-2,-1,0,1,2, \ldots\}$
The set of Rational Numbers (fractions) $Q=\{x: x$ can be written in the form a / b, where a and b are integers and b is not zeros
The set of Real Numbers $R=\{x: x$ has a decimal expansion $\}$
A set is well-defined if we are able to tell whether any particular object is an element of that set or not.
Example: $A=\{2,4,6,8, \ldots\}$ is well-defined because we know what numbers belong to A and what numbers do not belong to A
$B=\{$ tall men $\}$ is not well-defined because the definition of "tall" is not specific
The set that contains no elements is called the empty set or null set. This set is labeled by the symbol \varnothing. Another notation for the empty set is $\}$.

The universal set is the set of all elements under consideration in the problem and is denoted by the capital letter U.

