Place Value Numeration Systems

Base-10 (Hindu-Arabic) uses 10 single digits $(0,1,2,3,4,5,6,7,8,9)$ to form a number.
It is a place value system, which means the position a digit is in has a place value based on the powers of 10 . For example, 200 is 2 hundreds $\left(10^{2}\right)$ but 20 is 2 tens $\left(10^{1}\right)$ and 2 is 2 ones $\left(10^{0}\right)$.

Place value name	Million	Hundred- thousand	Ten- thousand	Thousand	Hundred	Ten	Ones
Power of ten	10^{6}	10^{5}	10^{4}	10^{3}	10^{2}	10^{1}	$10^{0}=1$

We can write a number in expanded notation by writing the face value times the place value.
For example: $1,234,567$ in expanded form is $1 * 10^{6}+2 * 10^{5}+3 * 10^{4}+4^{*} 10^{3}+5^{*} 10^{2}+6^{*} 10^{1}+7 * 1$
Counting: When we count in base-10 we are adding 1 to the ones place value.
Every time there is a "group" of 10 in any place value it is carried over to the next place value.
$0,1,2,3,4,5,6,7,8,9,10($ ten $=1$ group of 10 and 0 ones)
$11,12,13,14,15,16,17,18,19,20(19=1$ group of $10 \& 9$ ones, $20=2$ groups of 10 and 0 ones), \ldots,
$91,92,93,9495969798,99,100$ ($93=9$ groups of $10 \& 3$ ones, $100=1$ group of 100 and 0 tens and 0 ones)

For bases other than 10, a subscript at the end of the number indicates the base.

Base-5 uses only 5 digits $(0,1,2,3,4)$ to form a number.
The place value of a digit is based on powers of 5. The place value powers of 5 increase as we "read" the numeral from right to left.
For example, the base-5 numeral $12304{ }_{5}$ in expanded form is $1 * 5^{4}+2 * 5^{3}+3 * 5^{2}+0 * 5^{1}+4 * 1$
Counting: When we count in base- 5 we are adding 1 to the digit in the ones place value.
Every time there is a "group" of 5 in a place value it is carried over to the next larger place value.
$0_{5}, 1_{5}, 2_{5}, 3_{5}, 4_{5}, 10_{5},\left(10_{5}=1\right.$ group of 5 and 0 ones $)$
$11_{5}, 12_{5}, 13_{5}, 14_{5}, 20_{5}$,
$\left(11_{5}=1\right.$ group of $5 \& 1$ one, $12_{5}=1$ group of $5 \& 2$ ones, $13_{5}=1$ group of $5 \& 3$ ones,
$145=1$ group of 5 and 4 ones and $20_{5}=2$ groups of 5 and zero ones), \ldots,
$41_{5}, 42_{5}, 43_{5}, 44_{5}, 100_{5},\left(1005=1\right.$ group of 5^{2}, zero 5 s and 0 ones $), \ldots$
To convert a base- 5 number to base-10: multiply each face value by its place value.
For example, the base-5 numeral 123045 in base-10 is
$1 * 5^{4}+2 * 5^{3}+3 * 5^{2}+0 * 5^{1}+4 * 1=1 * 625+2 * 125+3 * 25+0 * 5+4 * 1=954$
To convert a base-10 to base-5: we need to divide by powers of 5. Start with the largest possible power of 5 that is less than the base-10 number.

For example, write 2146 in base- 5

Powers of 5	$5^{5}=3125$	$5^{4}=625$	$5^{3}=125$	$5^{2}=25$	$5^{1}=5$	$5^{0}=1$
	bigger	$2146 \div 625$	$271 \div 125$	$21 \div 25$	$21 \div 5$	$1 \div 1$
quotient	than 2146	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{0}$	$\mathbf{4}$	$\mathbf{1}$
remainder		271	21	21	1	0

The equivalent base-5 number is the quotients: $\mathbf{3 2 0 4 1 5}$

The above processes can be used in any number base.

Remember that the place values need to represent the number base being used

Base-3 uses only 3 digits $(0,1,2)$ to form a number.
Place values from right to left are $1,3^{1}, 3^{2}, 3^{3}, 3^{4}, \ldots$
Base-4 uses only 4 digits $(0,1,2,3)$ to form a number.
Place values from right to left are $1,4^{1}, 4^{2}, 4^{3}, 4^{4}, \ldots$
Base-6 uses only 6 digits ($0,1,2,3,4,5$) to form a number.
Place values from right to left are $1,6^{1}, 6^{2}, 6^{3}, 6^{4}, \ldots$
Base-8 uses only 8 digits ($0,1,2,3,4,5,6,7$) to form a number.
Place values from right to left are $1,8^{1}, 8^{2}, 8^{3}, 8^{4}, \ldots$
Base-9 uses only 9 digits $(0,1,2,3,4,5,6,7,8)$ to form a number.
Place values from right to left are $1,9^{1}, 9^{2}, 9^{3}, 9^{4}, \ldots$
For bases larger than 10 we need more than 10 single digits to form a number so we use the digits 0 to 9 and then capital letters.

Base-12 uses only 12 digits ($0,1,2,3,4,5,6,7,8,9, \mathrm{~A}, \mathrm{~B}$) to form a number. A represents 10 and B is 11 . Place values from right to left are $1,12^{1}, 12^{2}, 12^{3}, 12^{4}, \ldots$

Base-16 uses only 16 digits ($0,1,2,3,4,5,6,7,8,9, \mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D}, \mathrm{E}, \mathrm{F}$) to form a number. A represents $10, \mathrm{~B}$ is $11, \mathrm{C}$ is $12, \mathrm{D}$ is $13, \mathrm{E}$ is 14 and F represents 15.
Place values from right to left are $1,16^{1}, 16^{2}, 16^{3}, 16^{4}, \ldots$

