Place Value Numeration Systems

Base-10 (Hindu-Arabic) uses 10 single digits (0, 1, 2, 3, 4, 5, 6, 7, 8, 9) to form a number.

It is a <u>place value system</u>, which means the position a digit is in has a <u>place value based on the powers of 10</u>. For example, 200 is 2 hundreds (10^2) but 20 is 2 tens (10^1) and 2 is 2 ones (10^0) .

Place value name	Million	Hundred-	Ten-	Thousand	Hundred	Ten	Ones
		thousand	thousand				
Power of ten	106	10 ⁵	104	10 ³	10 ²	10 ¹	100=1

We can write a number in <u>expanded notation</u> by writing the <u>face value times the place value</u>. For example: 1,234,567 in expanded form is $1*10^6 + 2*10^5 + 3*10^4 + 4*10^3 + 5*10^2 + 6*10^1 + 7*1$

<u>**Counting**</u>: When we count in base-10 we are <u>adding 1 to the ones place value</u>. Every time there is a "group" of 10 in any place value it is carried over to the next place value.

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 (ten = 1 group of 10 and 0 ones) 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 (19 = 1 group of 10 & 9 ones, 20 = 2 groups of 10 and 0 ones),..., 91, 92, 93, 94 95 96 97 98, 99, 100 (93 = 9 groups of 10 & 3 ones, 100 = 1 group of 100 and 0 tens and 0 ones)

For bases other than 10, a subscript at the end of the number indicates the base.

Base-5 uses only 5 digits (0, 1, 2, 3, 4) to form a number.

The **place value** of a digit is based on **powers of 5**. The place value powers of 5 increase as we "read" the numeral from *right* to *left*. For example, the base-5 numeral 12304₅ in expanded form is $1*5^4 + 2*5^3 + 3*5^2 + 0*5^1 + 4*1$

<u>Counting</u>: When we count in base-5 we are <u>adding 1 to the digit in the ones place value</u>. Every time there is a "group" of 5 in a place value it is carried over to the next larger place value.

 $0_5, 1_5, 2_5, 3_5, 4_5, 10_5$, $(10_5 = 1 \text{ group of 5 and 0 ones})$ $11_5, 12_5, 13_5, 14_5, 20_5,$ $(11_5 = 1 \text{ group of 5 & 1 one, } 12_5 = 1 \text{ group of 5 & 2 ones, } 13_5 = 1 \text{ group of 5 & 3 ones,}$ $14_5 = 1 \text{ group of 5 and 4 ones and } 20_5 = 2 \text{ groups of 5 and zero ones}), ...,$ $41_5, 42_5, 43_5, 44_5, 100_5, (100_5 = 1 \text{ group of 5^2, zero 5s and 0 ones}), ...,$

To convert a base-5 number to base-10: multiply each face value by its place value. For example, the base-5 numeral 12304_5 in base-10 is $1*5^4 + 2*5^3 + 3*5^2 + 0*5^1 + 4*1 = 1*625 + 2*125 + 3*25 + 0*5 + 4*1 = 954$

<u>To convert a base-10 to base-5</u>: we need to <u>divide by powers of 5</u>. Start with the largest possible power of 5 that is less than the base-10 number.

For example, write 2146 in base-5

Powers of 5	5 ⁵ =3125	5 ⁴ =625	$5^3 = 125$	$5^2 = 25$	5 ¹ =5	$5^0 = 1$
	bigger	$2146 \div 625$	271 ÷ 125	21÷25	21 ÷ 5	1 ÷ 1
quotient	than 2146	3	2	0	4	1
remainder		271	21	21	1	0

The equivalent base-5 number is the quotients: 320415

<u>The above processes can be used in any number base.</u> <u>Remember that the place values need to represent the number base being used</u>

<u>Base-3</u> uses only 3 digits (0, 1, 2) to form a number. Place values from right to left are 1, 3^1 , 3^2 , 3^3 , 3^4 , ...

<u>Base-4</u> uses only 4 digits (0, 1, 2, 3) to form a number. Place values from right to left are $1, 4^1, 4^2, 4^3, 4^4, ...$

<u>Base-6</u> uses only 6 digits (0, 1, 2, 3, 4, 5) to form a number. Place values from right to left are 1, 6^1 , 6^2 , 6^3 , 6^4 , ...

<u>Base-8</u> uses only 8 digits (0, 1, 2, 3, 4, 5, 6, 7) to form a number. Place values from right to left are 1, 8^1 , 8^2 , 8^3 , 8^4 , ...

<u>Base-9</u> uses only 9 digits (0, 1, 2, 3, 4, 5, 6, 7, 8) to form a number. Place values from right to left are $1, 9^1, 9^2, 9^3, 9^4, \dots$

For **<u>bases larger than 10</u>** we need more than 10 <u>single</u> digits to form a number so we use the digits 0 to 9 and then capital letters.

<u>Base-12</u> uses only 12 digits (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B) to form a number. A represents 10 and B is 11. Place values from right to left are 1, 12¹, 12², 12³, 12⁴, ...

<u>Base-16</u> uses only 16 digits (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F) to form a number. A represents 10, B is 11, C is 12, D is 13, E is 14 and F represents 15. Place values from right to left are 1, 16¹, 16², 16³, 16⁴, ...