Place Value Numeration Systems

Base-10 (Hindu-Arabic) uses 10 single digits (0, 1, 2, 3, 4, 5, 6, 7, 8, 9) to form a number.

It is a <u>place value system</u>, which means the position a digit is in has a <u>place value based on the powers of 10</u>. For example, 200 is 2 hundreds (10^2) but 20 is 2 tens (10^1) and 2 is 2 ones (10^0) .

Place value name	Million	Hundred-	Ten-	Thousand	Hundred	Ten	Ones
		thousand	thousand				
Power of ten	10^{6}	10^{5}	10^{4}	10^{3}	10^{2}	10^{1}	$10^0 = 1$

We can write a number in **expanded notation** by writing the <u>face value times the place value</u>.

For example: 1,234,567 in expanded form is $1*10^6 + 2*10^5 + 3*10^4 + 4*10^3 + 5*10^2 + 6*10^1 + 7*1$

<u>Counting:</u> When we count in base-10 we are <u>adding 1 to the ones place value</u>.

Every time there is a "group" of 10 in any place value it is carried over to the next place value.

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 (ten = 1 group of 10 and 0 ones)

11, 12, 13, 14, 15, 16, 17, 18, 19, 20 (19 = 1 group of 10 & 9 ones, 20 = 2 groups of 10 and 0 ones),...,

91, 92, 93, 94 95 96 97 98, 99, 100 (93 = 9 groups of 10 & 3 ones, 100 = 1 group of 100 and 0 tens and 0 ones)

For bases other than 10, a subscript at the end of the number indicates the base.

Base-5 uses only 5 digits (0, 1, 2, 3, 4) to form a number.

The <u>place value</u> of a digit is based on <u>powers of 5</u>. The place value powers of 5 increase as we "read" the numeral from *right* to *left*.

For example, the base-5 numeral 123045 in expanded form is $1*5^4 + 2*5^3 + 3*5^2 + 0*5^1 + 4*1$

<u>Counting:</u> When we count in base-5 we are <u>adding 1 to the digit in the ones place value</u>.

Every time there is a "group" of 5 in a place value it is carried over to the next larger place value.

$$0_5$$
, 1_5 , 2_5 , 3_5 , 4_5 , 10_5 , ($10_5 = 1$ group of 5 and 0 ones) 11_5 , 12_5 , 13_5 , 14_5 , 20_5 ,

 $(11_5 = 1 \text{ group of } 5 \& 1 \text{ one}, 12_5 = 1 \text{ group of } 5 \& 2 \text{ ones}, 13_5 = 1 \text{ group of } 5 \& 3 \text{ ones},$

 $14_5 = 1$ group of 5 and 4 ones and $20_5 = 2$ groups of 5 and zero ones), ...,

 41_5 , 42_5 , 43_5 , 44_5 , 100_5 , $(100_5 = 1 \text{ group of } 5^2, \text{ zero } 5 \text{s and } 0 \text{ ones}), ...$

To convert a base-5 number to base-10: multiply each face value by its place value.

For example, the base-5 numeral 123045 in base-10 is

$$1*5^4 + 2*5^3 + 3*5^2 + 0*5^1 + 4*1 = 1*625 + 2*125 + 3*25 + 0*5 + 4*1 = 954$$

<u>To convert a base-10 to base-5</u>: we need to <u>divide by powers of 5</u>. Start with the largest possible power of 5 that is less than the base-10 number.

For example, write 2146 in base-5

1 of example, write 2140 in base 5											
Powers of 5	$5^5 = 3125$	$5^4 = 625$	$5^3 = 125$	$5^2 = 25$	$5^1 = 5$	$5^0 = 1$					
	bigger	2146 ÷ 625	271 ÷ 125	21÷ 25	21 ÷ 5	1 ÷ 1					
quotient	than 2146	3	2	0	4	1					
remainder		271	21	21	1	0					

The equivalent base-5 number is the quotients: 320415

The above processes can be used in any number base. Remember that the place values need to represent the number base being used

<u>**Base-3**</u> uses only 3 digits (0, 1, 2) to form a number. Place values from right to left are $1, 3^1, 3^2, 3^3, 3^4, \dots$

<u>Base-4</u> uses only 4 digits (0, 1, 2, 3) to form a number. Place values from right to left are $1, 4^1, 4^2, 4^3, 4^4, \dots$

<u>Base-6</u> uses only 6 digits (0, 1, 2, 3, 4, 5) to form a number. Place values from right to left are $1, 6^1, 6^2, 6^3, 6^4, \dots$

<u>**Base-8**</u> uses only 8 digits (0, 1, 2, 3, 4, 5, 6, 7) to form a number. Place values from right to left are $1, 8^1, 8^2, 8^3, 8^4, \dots$

<u>Base-9</u> uses only 9 digits (0, 1, 2, 3, 4, 5, 6, 7, 8) to form a number. Place values from right to left are $1, 9^1, 9^2, 9^3, 9^4, \dots$

For <u>bases larger than 10</u> we need more than 10 <u>single</u> digits to form a number so we use the digits 0 to 9 and then capital letters.

<u>Base-12</u> uses only 12 digits (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B) to form a number. A represents 10 and B is 11. Place values from right to left are $1, 12^1, 12^2, 12^3, 12^4, \dots$

<u>Base-16</u> uses only 16 digits (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F) to form a number. A represents 10, B is 11, C is 12, D is 13, E is 14 and F represents 15. Place values from right to left are $1, 16^1, 16^2, 16^3, 16^4, \dots$